RNA Interference–Mediated Silencing of the Acetyl-CoA- Carboxylase-a Gene Induces Growth Inhibition and Apoptosis of Prostate Cancer Cells

نویسندگان

  • Koen Brusselmans
  • Ellen De Schrijver
  • Guido Verhoeven
  • Johannes V. Swinnen
چکیده

Overexpression of lipogenic enzymes is a common characteristic of many cancers. Thus far, studies aimed at the exploration of lipogenic enzymes as targets for cancer intervention have focused on fatty acid synthase (FAS), the enzyme catalyzing the terminal steps in fatty acid synthesis. Chemical inhibition or RNA interference (RNAi)–mediated knockdown of FAS consistently inhibits the growth and induces death of cancer cells. Accumulation of the FAS substrate malonyl-CoA has been implicated in the mechanism of cytotoxicity of FAS inhibition. Here, using RNAi technology, we have knocked down the expression of acetyl-CoA carboxylase-A (ACC-A), the enzyme providing the malonylCoA substrate. Silencing of the ACC-a gene resulted in a similar inhibition of cell proliferation and induction of caspase-mediated apoptosis of highly lipogenic LNCaP prostate cancer cells as observed after FAS RNAi. In nonmalignant cells with low lipogenic activity, no cytotoxic effects of knockdown of ACC-A or FAS were observed. These findings indicate that accumulation of malonyl-CoA is not a prerequisite for cytotoxicity induced by inhibition of tumorassociated lipogenesis and suggest that in addition to FAS, ACC-A is a potential target for cancer intervention. (Cancer Res 2005; 65(15): 6719-25)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells.

Overexpression of lipogenic enzymes is a common characteristic of many cancers. Thus far, studies aimed at the exploration of lipogenic enzymes as targets for cancer intervention have focused on fatty acid synthase (FAS), the enzyme catalyzing the terminal steps in fatty acid synthesis. Chemical inhibition or RNA interference (RNAi)-mediated knockdown of FAS consistently inhibits the growth and...

متن کامل

Suppressive Effect of Constructed shRNAs against Apollon Induces Apoptosis and Growth Inhibition in the HeLa Cell Line

Background: Cervical cancer is the second most common female cancer worldwide. Inhibitors of apoptosis proteins (IAPs) block apoptosis; therefore, therapeutic strategies targeting IAPs have attracted the interest of researchers in recent years. Apollon, a member of IAPs, inhibits apoptosis and cell death. RNA interference is a pathway in which small interfering RNA (siRNA) or shRNA (short hairp...

متن کامل

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

Epigallocatechin-3-Gallate Induces Apoptosis through Up-regulation of Bax and Down-regulation of Bcl-2 in Prostate Cancer Cell Line

Background and Aims: Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound from green tea, which its anticancer effects on many types of cancers have been confirmed, but the molecular mechanism by which EGCG induces apoptosis remains unknown. The aim of the present study was to investigate anti-proliferative properties and apoptotic signaling pathway of EGCG on PC3 human prostate cancer ...

متن کامل

ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms.

ATP citrate lyase (ACLY) is a cytosolic enzyme that catalyzes generation of acetyl-CoA, which is a vital building block for fatty acid, cholesterol, and isoprenoid biosynthesis. ACLY is upregulated in several types of cancer, and its inhibition induces proliferation arrest in certain cancer cells. As ACLY is involved in several pathways, its downregulation may affect multiple processes. Here, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005